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We examine the steady axisymmetric source-sink flows of a stably stratified fluid 
in a rotating annulus, for which S - O ( l ) ,  E 4 1. Numerical methods are used to 
integrate the unsteady Navier-Stokes equations to obtain the approximate steady 
solutions. Results on the radial and vertical strucbures of the flow and temperature- 
field details are presented. Specific comparisons of the relative sizes of the terms in 
the equations are conducted to reveal the balance of the dynamic effects. The profiles 
of the vorticity components are displayed. In  the linear flow regime of a homogeneous 
fluid, the transport of fluid in the meridional plane takes place entirely via boundary 
layers. As stratification increases, the meridional flows are less concentrated in the 
boundary layers, and an appreciable portion of the meridional fluid transport is 
carried through the main body of fluid. The distinction between the sidewall layers 
and the interior becomes less clear. The flows in the main body of fluid develop vertical 
velocity shear, resulting in a thermal-wind relation. In the nonlinear case, the source 
sidewall layer thickens and the sink layer thins. As stratification increases, the 
meridional fluid transport through the main body of fluid is more pronounced than 
in the linear case. The balance of terms indicates that the bulk of the flow field is 
still characterized by the thermal-wind relation. 

1. Introduction 
In  this paper we investigate the steady axisymmetric motions of a fluid confined 

in a rotating cylindrical annulus when the fluid is injected uniformly in the radial 
direction through the inner sidewall (source) and withdrawn through the outer 
sidewall (sink). The central axis of the annulus coincides with the vertical rotation 
vector, which is antiparallel to gravity. We consider the problems for which the aspect 
ratio of the annulus is O( 1)  and the appropriately defined Ekman number E is minute. 

Hide (1968) gave an informative account of the basic properties of such a flow 
system for a homogeneous fluid. This source-sink flow is particularly interesting in 
that the sidewall vertical boundary layers play a central role in determining the 
character of the interior flow (Barcilon 1968; Bennetts & Hocking 1973). The Ekman 
layers are present on the horizontal endwalls, but the layers are non-divergent ; 
therefore the crucial Ekman suction mechanism, which controls the interior flow in 
situations like spin-up (see e.g. Wedemeyer 1964), is absent. The transport of fluid 
in the meridional plane takes place entirely via boundary layers; the fluid flows along 
the source sidewall layer toward the Ekman layers on the endwalls, and leaves the 
Ekman layers to flow toward the cylinder mid-depth in the sink sidewall layer. In 
the geostrophic interior there is no meridional motion, the (relative) azimuthal flows 
are in the opposite sense to the rotation, and the relative axial vorticity vanishes. 
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Bennetts & Jackson (1974, hereinafter referred to as BJ) performed a combined 
laboratory and numerical study of the rotating source-sink system of a homogeneous 
fluid over a range of the Rossby number. Their numerical results, which were checked 
against the experimental measurements of the azimuthal flows, provided detailed 
flow-field data in the sidewall layers as well as in the geostrophic interior. The 
numerical study of B J  demonstrated broad qualitative agreement with the theoretical 
predictions of Hide (1968). In  the linear flow regime, B J  clearly showed the double 
structure of the sidewall boundary layer, the inner part being the layer superimposed 
on the outer d layer. By displaying the radial profiles of the balance of terms in the 
equations of motion, B J  described the essential dynamical features that are present 
in the various parts of the flow field. They presented the results for the nonlinear case 
in which the inertial terms are no longer negligible. They showed the thickening of 
the source layer and the thinning of the sink layer in the nonlinear flow regime. 

In this paper we propose to study the steady axisymmetric source-sink flows of 
a stably stratified fluid in a rotating annulus, much in line with the numerical 
approach taken by BJ  for a homogeneous fluid. The modifications of the flow due 
to the introduction of stratification S = 0(1), where S is the stratification parameter 
(see $2), pose a suggestive model problem in which the dynamic constraints of both 
rotation and stratification are imposed in the sidewall boundary layers and in the 
geostrophic interior. It is anticipated that vertical motions in the sidewall layers will 
be inhibited owing to stable stratification. It will be shown that the radially injected 
mass flux can penetrate to a larger radial distance than for a homogeneous fluid. This 
implies that a substantial portion of the meridional fluid transport is carried through 
the main body of fluid. The vertical motions are spread out over the entire flow field, 
unlike the case of a homogeneous fluid, where vertical motions are confined to the 
narrow sidewall layers. It follows that, with increasing stratification, the sidewall 
layers themselves would become less distinct. 

We have acquired comprehensive flow data for both the linear and nonlinear cases 
using a finite-difference numerical method. Numerical solutions were obtained for the 
unsteady flow of a stratified fluid, initially in a state of solid-body rotation, in 
response to an impulsively started radial mass injection-withdrawal at the sidewalls. 
Integration of the full Navier-Stokes equations was continued until the flow becomes 
approximately steady (see §3).  Results on the radial and vertical structures of the 
flow and temperature fields in the approximate steady state are presented. Some 
specific comparisons of the relative sizes of the terms in the equations enabled us to 
observe the changes brought by the stratification and by the nonlinearities. Plots of 
the vorticity are also presented, which relate to the gradients of the flow. It is found 
that for a stratified fluid the dominant features in the main body of fluid are 
determined by the Coriolis effect and the buoyancy effect, resulting in a thermal-wind 
relation. 

2. The numerical model 
Consider a right-circular annulus, whose inner and outer radii are a and b 

respectively, and whose height is H ,  filled with a Boussinesq fluid having kinematic 
viscosity Y, thermal diffusivity K and coefficient of volumetric expansion a. These 
physical properties of the fluid are assumed to be constant. The top and bottom 
endwalls are thermal conductors and are kept at  constant temperatures to produce 
a stable stratification. The vertical temperature difference is AT over H .  The sidewall 
boundaries are thermally insulated. The Froude number Q2a2/gH is much smaller 
than one. 



Source-sink flows of a strati$ed Jluid in a rotating annulus 113 

The axisymmetric incompressible Navier-Stokes equations written for cylindrical 
coordinates ( r ,  8, z )  rotating with angular speed 52 are 
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(4) 

where 

and ( u , v , w )  are the velocity components in the rotating frame, p the reduced 
pressure, T the temperature such that the full temperature equals To + T, and po and 
To are respectively the reference values of density and temperature a t  the bottom 
endwall. The equation of state is 

p = po(l -aT). (6) 

Since the problem is symmetric about the mid-depth plane z = i H ,  integration 
needs to be conducted for the bottom half of the cylinder, 0 6 z < i H ,  a 6 r < b, only. 

The initial conditions for the fluid are 

z AT 
H a t  t = 0. (7)  u = v = w = o ,  T=-- 

The boundary conditions a t  the bottom endwall are 

u = v = w = O ,  T = O  at  z = O ,  

and the symmetry conditions a t  the mid-depth plane are 

The boundary conditions at the sidewalls are 

= O  at r = a ,  (9a) u=ui ,  v = w = o ,  - 
aT 
ar 

The sidewall boundary conditions (9a ,  b ) ,  give a uniform radial mass flux, but a t  the 
corner regions these are not compatible with the no-slip condition ( 8 a )  a t  the endwall. 
BJ specified a functionf(z), which gives a uniform flow over much of the sidewall 
but is designed to give a simple pattern of streamlines in the corner regions, in the 
sidewall boundary conditions. However, as BJ stated, there is no physical evidence 
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to support a particular choice of f ( z ) .  BJ  found that the disturbances that may arise 
from the incompatibility of the boundary conditions would be confined to a small 
corner area approximately & by B. BJ also reported that any attempt to resolve 
the corner regions based on the pressure distribution leads to  severe numerical 
complications. Based on these considerations and to avoid excessive numerical 
difficulties, we have decided to use (9) as the sidewall boundary conditions, disregarding 
the possible inconsistency in the small corner regions. 

As a referee pointed out, the sidewall temperature boundary condition creates 
difficult conditions for a laboratory experiment. For the theoretical model this 
situation poses no serious difficulty. I n  this paper we consider a theoretical flow model 
that is amenable to mathematical treatment and that a t  the same time is useful 
in the comprehension of the essential dynamics. 

Equations (1)-(6) and the initial and boundary conditions were finite-differenced 
on a staggered mesh. The grid was stretched in both the r- and z-directions to have 
adequate resolution of the boundary layers near the endwall and the sidewalls. The 
pressure was found from the Poisson equation obtained by taking the divergence of 
( 1 )  and (3) ,  which was solved by an AD1 iterative approach. For details on the 
numerical techniques the reader is referred to Warn-Varnas et al. (1978). The 
reliability and accuracy of this numerical model have been verified previously for a 
variety of transient rotating and stratified flows by checking the model predictions 
against rotating laser-Doppler velocimeter (LDV) measurements in the laboratory 
spin-up experiments (Warn-Varnas et al. 1978 ; Hyun, Fowlis & Warn-Varnas 1982). 
All of these comparisons demonstrated excellent agreement between the results of 
this numerical model and the LDV measurements. 

3. The computations 

parameters as those used by B J :  
The numerical calculations were performed with the same geometrical and fluid 

a = 5.06 cm, b = 11.76 cm, H = 5.00 cm, Q = 0.25 rad/s, (10) 

v = 1.00 x lop2 cm2/s, K = 1.46 x lop3 cm2/s, 

which give E( = v/2QH2) = 8.0 x 
B J  defined the Rossby number E by E = Vm/2QRH, where V, is the maximum 

azimuthal velocity. It should be noted, however, that V, is a quantity that will only 
be known as part of the completed solution, rather than an input parameter that can 
be specified at the outset of the calculation. Since the motion is generated by radial 
mass injection-withdrawal, it  appears to be more appropriate to link E to the radial 
velocity at the sidewall (or the total volume flow rate passing through the container). 
For this purpose, we note that the azimuthal velocity scale is E-t times the meridional 
velocity scale (Hide 1968). Therefore we choose V, E E-hu, as the azimuthal velocity 
scale. We now define E using V,, i.e. E = V0/2QH. For the linear case, the value of 
ui was set to be ui = 2.676 x lop5 cm/s, giving E = 3.78 x which allowed us to 
reproduce very closely the homogeneous, linear flow regime treated by BJ.  For the 
nonlinear case, as was done by B J ,  the inflow rate was increased by a thousand times 
to ui = 2.676 x cm/s, giving E = 0.378. We kept the rotation rate constant so as 
not to alter the value of the Ekman number (Barcilon et al. 1975), and varied the 
value of aAT to give three different values of the stratification parameter 
X( = (gaAT/H)?/2Q) = 0 (corresponding to a homogeneous fluid), 0.72, and 2.00. 

Pr( = V / K )  = 6.85. 
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Calculations were made using a 42 x 22 grid in the bottom half of the ( r ,  2)-plane. 
The sensitivity of the results of this numerical model to grid size was tested by 
Warn-Varnas et al. (1978). The stretching of the grid enabled us to place about eight 
grid points in the Ekman layer. The time step used was At = 0.00625 s, which assured 
accuracy and satisfied the computational stability criteria described in Warn-Varnas 
et al. For a given set of parameters, the computer time to integrate the equations 
up to 200 s was approximately 4 h on a UNIVAC 1100 computer. 

Some discussion is necessary about the nature of the approximate steady-state 
solutions that we are presenting in this paper. The solutions were obtained by 
integrating the unsteady equations, which arise in response to the impulsively started 
radial mass flux, to some finite time 7. In  the case of homogeneous fluid ( S  = 0 ) ,  as 
was reported by BJ, the approach to the steady-state solutions is approximately 
exponential for large times. BJ  demonstrated that the variables are changing very 
slowly after about 3 e-folding spin-up times (see e.g. Wedemeyer 1964). For practical 
purposes, therefore, the integration was conducted to r = 180 s, at which time the 
solutions represent nearly 99 yo of the final-state conditions (see BJ). The solutions 
that we present for a stratified fluid are not as close to the strict steady-state solution 
as for a homogeneous fluid. The variables are still changing slowly with time, 
apparently governed by diffusive processes. Allen (1973) gave an illuminating 
discussion on the use of the approximate steady-state solutions. He considered the 
motions of a stratified fluid in a cylinder driven by the impulsively started differential 
rotation of the endwall; however, his discussion is equally valid for the problem in 
hand. The conclusion that emerges from Allen's discussion and a long-run test 
calculation (the case of S = 0.72 was integrated to 500 s) is that it is clearly 
unnecessary (and unpractical) to integrate the equations to the diffusive timescale, 
which is on the order of 2000 s for the present parameters, to depict the essential 
features of the steady-state conditions. The approximate steady-state solutions, 
which were obtained by terminating the integration at  r = 350 s, would have small 
quantitative differences from the strict steady-state solutions. But, as Allen pointed 
out, these small remaining changes do not alter the qualitative character of the 
solutions, especially their relative nature. 

The results of the computations are described in $54 and 5. The discussion will be 
restricted to the flows in the bottom half of the annulus. 

4. The linear case 

e = 3.78 x loF4, for which the nonlinear terms are negligibly small. 
In this section we present the results of the flow calculations for the linear case 

4.1. The velocity profiles 
The profiles of the azimuthal and radial velocities exhibit marked variations as the 
stratification is increased, as illustrated in figure 1. For a homogeneous fluid, v and 
u in the interior are uniform in the z-direction to a high degree of accuracy, a well-known 
phenomenon described by the Taylor-Proudman theoren!. The radial velocity varies 
rapidly with r in the sidewall layers, which are scaled by O(Z&H), and is very small 
(but not exactly zero because of the finite value of E )  in the geostrophic interior. The 
profile of -vr also displays rapid variations with r in the sidewall layers, but -vr 
remains constant in'the interior. As was documented by detailed comparisons by BJ,  
these profiles are qualitatively consistent with the predictions of the linear theory 
of Hide (1968). 
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FIQURE 1 .  Profiles of -vr and ur for E = 3.78 x lo-*. Label A denotes z = 0.45H, and label B 
denotes z = 0.22H.  -, S = 0; ----, 0.72;  ---, 2.0. 

As the stratification is introduced, the flow field undergoes changes in character. 
Before inspecting the flow details, it is informative to study the qualitative nature 
of the flows in the boundary layers and in the interior. This will provide physical 
insight into the dynamics involved in the changes brought by the stratification. 

Following Pedlosky (1971), we split each field into its interior value (denoted by 
subscript I) plus a boundary-layer correction (denoted by subscript B). For example, 
for the azimuthal velocity u = uI + uB, where uB vanishes outside the boundary layer. 
We recognize that the boundary layer fields are rapidly varying functions of r .  

A consistent first approximation to the governing equations yields the following 
two useful relations between the boundary-layer variables (Pedlosky 197 1) : 

where F = r / H .  
Let us now consider the source sidewall boundary layer. As the stratification 

increases, vertical motions are suppressed, indicating that awB/az decreases in 
magnitude (pictures depicting the variations of wB with depth will be given later). 
Equation (1 1) then shows that auB/ar decreases in magnitude, i.e. the radial velocity 
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undergoes a smaller reduction in magnitude from its inflow velocity ui a t  the sidewall. 
We deduce that, as stratification increases, the overall magnitude of the radial 
velocity in the boundary layer increases. It furthermore follows from (12) that the 
variation of vB with r becomes more steep; this implies that, as Stratification 
increases, the azimuthal velocity a t  the edge of the boundary layer increases in 
magnitude. A similar reasoning can be applied to the flow in the sink sidewall 
boundary layer. 

In the interior, a cross-differentiation of the lowest-order r- and z-momentum 
equations for a stratified fluid produces 

which is the well-known thermal-wind relation. We observe that the descending fluid 
in the source layer is warmer and the ascending fluid in the sink layer is colder than 
the ambient fluid. Since the sidewalls of the annulus are thermally insulated, a 
negative radial temperature gradient is developed. As shown in (13), this radial 
temperature gradient supports the tilt in the profile of the azimuthal velocity. 
Because of this pronounced vertical shear of the azimuthal velocity, larger values of 
the radial velocity can be maintained in the interior. 

In summary, the inhibition of vertical motions in the sidewall boundary layers due 
to stratification has far-reaching consequences on the flows in the boundary layers 
and in the interior. The numerical results illustrated in figure 1 verify the qualitative 
predictions that were described above. As stratification increases, the magnitude of 
the azimuthal velocity varies more steeply with r in the boundary layer and reaches 
a larger value in the interior. The radial velocities in the interior become substantial, 
implying that the radial mass flux can penetrate to a larger radial distance than for 
a homogeneous fluid. In the linear flow regime, these velocity profiles maintain near 
symmetry about the mid-radius r = $(a + 6) of the annulus. For a stratified fluid, the 
z-uniformity of u and v in the interior is no longer sustained; the flows of a stratified 
fluid can support vertical velocity shear. 

Figure 2 shows the contour plots of v and the meridional stream function @. Here 
@ is defined such that u = - ( l / r )  a@/& and w = ( l /r )  a@/&. The top plots of figure 
2 clearly show that for a homogeneous tluid the azimuthal velocity in the interior 
is uniform in the z-direction and that the meridional fluid transport takes place via 
boundary layers. For a stratified fluid (see the bottom plots of figure 2), the azimuthal 
velocity field supports vertical shear. The v-plot also shows that the Ekman layer 
is weak and the interior azimuthal velocities themselves approach smoothly the 
boundary conditions a t  the endwall. The @-plot shows that an appreciable portion 
of the meridional fluid transport is carried through the interior. In  fact, as 
stratification increases, the distinction between the sidewall layers and the interior 
becomes unclear. 

Figure 3 shows the profiles of the vertical velocity w at different vertical levels. 
For a homogeneous fluid (see figure 3a) ,  w is negative in the source layer, zero in the 
interior, and positive in the sink layer. As the vertical position moves away from the 
mid-depth, the magnitudes of w in the sidewall layers increase to accommodate the 
increased meridional flow rate, while the thickness of the sidewall layers remain 
substantially unchanged. The suppression of vertical motions due to stratification is 
clearly seen in figure 3 (b) (note the difference in scales used in the ordinates of figures 
3a and 3b). As was stated earlier, figure 3 (b)  suggests that it is not possible to define 
clearly the sidewall layers. The vertical flows are generally toward the endwalls 
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FIGURE 2. Contour plots for B = 3.78 x of the azimuthal velocity v,  and of the meridional stream 
function +. (a)  S = 0; ( b )  S = 2.0. The specific values are: for S = 0, vmin = -0.46, the contour 
interval Av = 0.10, +,,, = 1.63, A+ = 0.44; for S = 2.0, vmin = -0.74, Av = 0.16, +.,,, = 1.20, 
A$ = 0.15. v is expressed in units of V , ,  and $ in units of &Hui. 

(mid-depth) approximately in the half-meridional plane on the side of source (sink) 
sidewall. The variations of w with depth show a qualitatively similar trend to those 
for a homogeneous fluid. 

4.2. Relative size of terms 

Much can be learned about the balance of the dynamic effects by inspecting the 
relative sizes of the terms in the equations, often known as the diagnostic studies. 
The dominant flows are in the azimuthal direction, and i t  is informative to examine 
the terms in (2) : the unsteady term is on the left-hand side of the equation, and the 

FIGURE 3. Profiles of the vertical velocity, expressed in units of ui, for 6 = 3.78 x 
(a )  S = 0; ( b )  S = 2. -, z = 0 . 1 3 H ;  ----, 0 . 2 3 H ;  " .  . ., 0 . 4 0 H .  
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FIGURE 4. For S = 0,  E = 3.78 x at z = 0.40H. ( a )  Relative sizes of the terms in the v-equation 
(2), expressed in units of Out: -, Coriolis term; ----, viscous term. (b) Relative sizes of the terms 
in the 7-equation (14), expressed in units of V,O/H:  -, Coriolis term; ---- , viscous term. (c) 
Axial vorticity 6, expressed in units of VJa.  ( d )  Azimuthal vorticity 7, expressed in units of ut /H.  

terms on the right-hand side represent respectively the nonlinear advection in the 
r-direction, the nonlinear advection in the z-direction, the curvature effect (Warn- 
Varnas et al. 1978), the Coriolis acceleration, and the viscous diffusion. Information 
on the meridional flows can be combined into a single equation for the azimuthal 
component of vorticity 7( = au/az- awl&) : 

The physical meaning of each term in (14) is similar to that of the corresponding term 
described earlier for (2), except for the last term in (14), which denotes the buoyancy 
(stratification) effect. 

In all the diagnostic studies for the linear case, the nonlinear terms were several 
orders of magnitude smaller than the linear terms in the equations, and therefore the 
nonlinear terms will not be shown in the figures. 

The results of the diagnostic studies for a homogeneous fluid are given in figure 
4; figure 4(a) for the v-equation ( 2 )  and figure 4(b) for the 7-equation (14), both of 
which were presented earlier by BJ. Figure 4(c) displays the profile of the axial 
component of vorticity <( = ( l / r )  a(rv)/ar), and figure 4 ( d )  shows the azimuthal 
component of vorticity 7. These plots are included to illustrate the correspondence 
between the dynamic process and the behaviour of the vorticity. The results in figure 
4 relate to the vertical level z = 0.40H, but figure 4 exemplifies typical situations in 
the regions away from the Ekman layer, since for a homogeneous fluid the solution 
is independent of z in the interior. 

It is evident in figures 4 ( a ,  b) that the primary balance is between Coriolis 



120 J .  M .  Hyun  

- 3 b  

r 

a b 
r 

1.0 x 

Q 

- L O X  104L I 

a b r 

FIGURE 5.  For S = 2.0, E = 3 . 7 8 ~  lop4. (a) Relative sizes of the terms in the v-equation ( 2 ) ,  
expressed in units of Chi,  a t  z = 0 . 2 3 H :  -, Coriolis term; ----, viscous term. (b) Axial vorticity 
6, expressed in units of V,/a: ----, z = 0 .23H;  . . . . .  , z = 0.40H. (c) Temperature profile, 
Q = T / A T - z / H ;  -, z = 0 .13H;  ----, 0 .23H;  . . . . ' ,  0.40H. 

acceleration and viscous diffusion. A further breakdown of the viscous term reveals 
that  diffusion in the radial direction is predominant. It is also to  be noted that the 
magnitudes of individual terms in the v-equation are vanishingly small in the interior. 
As was analysed by BJ, figure 4 ( b )  depicts the double structure of the sidewall layers, 
which are composed of the inner l& layer within the ,@ layer. Figure 4(c)  shows that, 
as can be inferred from the linear theory, 5 is negative in the source layer, zero in 
the interior, and positive in the sink layer. These numerical results indicate that [ 
increases monotonically in the sidewall layers, unlike the predictions of the linear 
theory (compare figure 4(c) with figure 4(b) of Hide 1968). This difference is 
attributable to the neglect of the layer in the theory. Figure 4(d) shows that q 
is zero in the interior and non-zero in the sidewall layers. The double structure of 
the sidewall layers is also exhibited by the behaviour of non-zero 7 (see also figure 
4b). A breakdown of 7 shows that -aw/ar is the principal contributor. 

The flow details for a stratified fluid are given in figures 5 and 6. A typical 
comparison of the terms in the v-equation is shown in figure 5(a ) .  It is clearly 
demonstrated that the Coriolis term balances the viscous-diffusion term, which is 
qualitatively similar to the flow of a homogeneous fluid. However, both the Coriolis 
term and the viscous term for a stratified fluid are of sizable magnitude in the interior, 
reflecting the fact that  u in the interior is significant for a stratified fluid (see figure 
1 ) .  Furthermore, a breakdown of the viscous term shows that diffusion in the vertical 
direction is comparable to that in the radial direction, owing to the vertical velocity 
shear that  is supported in the flow field. 
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FIGURE 6. For S = 2.0, E = 3.78 x at z = 0.23H. (a )  Relative sizes of the terms in the 7-equation 
(14), expressed in units of V , B / H :  -, Coriolis term; ----, viscous term; ---, buoyancy term. 
(b) Azimuthal vorticity 7, expressed in units of u i / H .  

The profiles of the axial vorticity y depicted in figure 5 ( b )  exhibit qualitative 
similarity to that of a homogeneous fluid (see figure 4c) .  As the vertical position varies, 
quantitative changes in 6 are seen in the regions where 5 is non-zero. This can also 
be deduced from the profiles of -vr of a stratified fluid (see figure 1), which show 
a steeper variation of -ur with r a t  a location closer to the mid-depth than a t  a 
location near the endwalls. 

Figure 5 (c )  shows the temperature structure ; Q represents the non-dimensional 
temperature deviation from the initial linear profile. The presence of negative 
temperature gradients in the interior is clearly seen. 

Figure 6 ( a )  illustrates the comparison of the terms in the 7-equation (14) for a 
stratified fluid. It is apparent that the main body of flow field is characterized by 
a balance between the Coriolis effect and the buoyancy effect, i.e. 252 av/az z ag aT/i3r, 
which results in a thermal-wind relation. The vertical shear of the dominant 
azimuthal velocity is related to  the radial temperature gradient. The effect of 
varying the vertical position causes quantitative changes only ; the magnitude of the 
azimuthal velocity shear is smaller in the regions close to the mid-depth of the annulus 
than in the regions close to the endwalls, but the qualitative shape of these plots 
remains unchanged. A comparison of figures 4 ( b )  and 6 ( a )  points to the observation 
that, for a stratified fluid, the distinction between the sidewall layers and the interior 
is less clear. 

Figure 6 ( b )  shows that for a stratified fluid the maximum values of q are smaller 
than those for a homogeneous fluid. This reflects the fact that the meridional flows 
are less concentrated in the areas close to the sidewalls with increasing stratification 
(see figures 2 b,  3 b ) .  The contributions from -aw/ar and au/az to 7 are of comparable 
magnitude. I n  the main body of flow field, the magnitudes of 7 are very small. The 
vertical variations of the 7 profiles (not shown here) indicate that the meridional 
flow gradients increase as the vertical position moves closer to the endwalls. 

5. The nonlinear case 
We now turn to the nonlinear case in which the inertial forces become important. 

The changes in the character of flows for a homogeneous fluid with larger Rossby 
numbers were analysed in detail by BJ. They demonstrated that in the nonlinear case 
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FIGURE 7. Same as in figure 1, except for E = 0.378: -, S = 0 ;  ---, S = 2.0. 

the source sidewall boundary layer thickens and the sink layer thins. BJ also noted 
the different distances that ur and -vr require to approach their interior values. 
These qualitative properties in the nonlinear flow regime for a homogeneous fluid had 
been predicted by theory (Hide 1968; Bennetts & Hocking 1973). 

The results of the computations using the Rossby number 6 = 0.378 for stratified 
fluids are presented in figures 7-1 1. 

Comparisons of figures 1 and 7 clearly show the thickening of the source layer and 
the thinning of the sink layer. In particular, the -vr plots in figure 7 indicate that 
it takes a considerably longer radial distance for -vr to reach its interior values than 
for the linear case. Inspection of the contour plots shown in figure 8 reveals that the 
meridional transport through the main body of flow field for a stratified fluid is more 
pronounced in the nonlinear case. 

The details of the nonlinear, homogeneous fluid flows are shown in figure 9. Figure 
9(a) describes the balance of terms for the v-equation, and figure 9(b) shows the 
balance of terms for the q-equation. BJ  also presented these two plots and discussed 
the physical implications in the nonlinear flow regime. For the v-equation, the 
primary balance in the source layer is between the geostrophic term and the nonlinear 
term. But, in the sink layer, the layer thins to allow the viscous effect to balance the 
other two, The profiles of the vorticity components, depicted in figures 9 (c, d ) ,  are 
consistent with the flow behaviour in the sidewall layers discussed by BJ. 

The results of the diagnostic studies for nonlinear stratified flows are presented in 
figures 10 and 11,  corresponding to their linear counterparts shown in figures 5 and 
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FIQURE 8. Same as in figure 2, except for E = 0.378. The specific values are: for S = 0,  urnin = -0.46, 
Aw = 0.10, $,,, = 1.76. A@ = 0.44; for S = 2.0, vmin = -0.67, Av = 0.08, $,,, = 1.0, A+ = 0.30. 

1 
a 

1 I 1 
b b. I 

Q r - 
FIGURE 9. Same as in figure 4, except for S = 0, E = 0.378. In (a) 

and ( b )  . . . . . shows the nonlinear terms. 
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FIGURE 10. Same as in figure 5 ,  except for S = 2.0, E = 0.378. In 
(a )  . . . . .  shows the nonlinear terms. 
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FIGTJRE 11. Same as in figure 6, except for S = 2.0, 6 = 0.378. In 
(a )  . . . . .  shows the nonlinear terms. 

6 respectively. A comparison of figures 10 (a )  and 9 (a )  indicates that  the profile of 
the nonlinear term changes little with the introduction of stratification. How- 
ever, we notice in figure 10(a) that the magnitudes of the geostrophic term and the 
viscous term are appreciable in the bulk of the flow field (see figure 5a) .  The profiles 
of the axial vorticity (figure l o b )  and of the temperature structure (figure 10c) are 
qualitatively similar to those for the linear case (see figures 5b, c ) .  

The balance of terms for the 7-equation for nonlinear, stratified flows is shown in 
figure 11 (a) .  It is important to recognize that for the value of the Rossby number 
used in this study, 6 = 0.378, the main body of the flow field is still characterized by 
the thermal-wind relation. The nonlinear term and the viscous term are significant 
only in the regions very close to the sidewalls. 
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6.  Conclusions 
Numerical methods were used to obtain the approximate steady solutions for 

source-sink flows of a stratified fluid in a rotating annulus. The effect of stratification 
inhibits vertical motions in the sidewall layers, and consequently the radial mass flux 
can penetrate to a larger radial distance than for a homogeneous fluid. The flows in 
the main body of fluid develop vertical velocity shear that is balanced by the radial 
temperature gradient, resulting in a thermal-wind relation. With increasing strati- 
fication, the meridional flows are less concentrated in the boundary layers. Thus 
an appreciable portion of the meridional fluid transport is carried through the main 
body of fluid. As the Rossby number increases, the character of flow changes owing 
to the nonlinearities. For the nonlinear case, the source boundary layer thickens and 
the sink layer thins. Different force balances are sustained in these two layers in the 
nonlinear flow regime. As the stratification increases in the nonlinear flow regime, 
the meridional transport of fluid through the main body of fluid is more pronounced. 
Comparisons of the dynamic effects reveal that the main body of fluid still 
characterized by the thermal wind relation. 
' For a homogeneous fluid, the axial vorticity is zero in the interior and non-zero 
in the sidewall layers, but its variation with r is monotonic. The axial-vorticity profile 
for a stratified fluid is qualitatively similar to that for a homogeneous fluid. The 
merging of the sidewall layers and the interior leads to  a qualitatively different pattern 
of vertical velocity profiles for a stratified fluid. 

For a homogeneous fluid, the rapid variation of w with r in the sidewall layers is 
the primary contributor to the azimuthal component of vorticity. For a stratified 
fluid, the contribution from au/az  is comparable to that of in making up the 
azimuthal component of vorticity. 

Appreciation is extended to the referees whose comments led to improvements in 
the paper. Dr William Fowlis of NASA Marshall Space Flight Center has provided 
many helpful comments on an earlier version of the manuscript. 
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